
Eur. Phys. J. B 36, 21–26 (2003)
DOI: 10.1140/epjb/e2003-00313-2 THE EUROPEAN

PHYSICAL JOURNAL B

The factorized form for dielectric relaxation

J.L. Ribeiroa and L.G. Vieira

Departamento de F́ısica, Universidade do Minho 4710-057 Braga, Portugal

Received 11 June 2003 / Received in final form 28 September 2003
Published online 19 November 2003 – c© EDP Sciences, Società Italiana di Fisica, Springer-Verlag 2003

Abstract. The factorized form of the dielectric function, introduced by Berreman and Unterwald to describe
reststrahlen, is well know by infrared spectroscopists. In the present paper, we show that such form can
be generalized to account for relaxational dispersion. After reviewing the fundamentals of this approach,
we show that the factorized form proposed for the description of dielectric relaxation is flexible, founded
on very general grounds and circumvents three basic limitations of the conventional sum model of Debye
relaxors: the coupling between different polar units, the high frequency transparency problem and the
non-inclusion of the effect of coupled non-polar degrees of freedom.

PACS. 77.22.Ch Permittivity (dielectric function) – 77.22.Gm Dielectric loss and relaxation

1 Introduction

A general microscopic description of the response of the
polarization of a condensed medium to an external elec-
tric field requires the use of techniques of non-equilibrium
statistical mechanics and represents a difficult task. In the
linear response limit, the assumption that the polarization
is capable of following the external driving field in a close
vicinity of equilibrium allows us to express the average
time evolution of a physical quantity A in terms of re-
tarded correlation functions, calculated at equilibrium [1]:

Ā(t) = 〈A〉eq. +
1

kT

t∫
−∞

dt′ �E0(t′)
〈

A(t)
.

�P (t′)
〉

. (1)

Even under these simplifying assumptions, a realis-
tic evaluation of the equilibrium correlation functions〈

A(t)
.

�P (t′)
〉

for a particular material under study would

require well adapted N -bodies microscopic models and a
considerable effort of calculus.

Because of these difficulties, the description of dielec-
tric dispersion of isolated materials still relies heavily on
ideal or simplified models: the Debye model [2] for re-
laxation and the Helmholtz-Ketler-Lorentz (HKL) oscilla-
tor [3] for resonance. The experimental results of dielectric
dispersion, which often deviate from these ideal models,
are commonly described by assuming the superposition of
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independent Debye relaxors and HKL oscillators:

ε(ω) = ε∞ +
∑

j

∆εj

1 + iωτj
+
∑

i

∆εjΩ
2
0i

Ω2
0i − ω2 − iωΓi

. (2)

However, linear dispersion relations are found in several
branches of physics and verify some general properties
that are, to a large extent, independent of the details of
the particular problem under focus. As first recognized by
Kramers and Krönig [4], they express some general prop-
erties of the system that stem from causality. It should
therefore be possible to derive general dispersion relations
without having a detailed knowledge of the basic inter-
actions by which they arise or relying upon simplified or
empirical models.

In the case of reststrahlen reflectance data, this phe-
nomenological approach led to the factorized form of di-
electric function proposed by Berreman and Unterwald [5],
which reflects the contribution to ε(ω) of a discrete set of
complex poles and zeros, located in the negative half com-
plex plane near the real frequency axis and having mirror
symmetry with respect to the imaginary frequency axis:

ε(ω) =
N∏

j=1

ω2 + 2iz′′j ω − (z′2j + z′′2j )
ω2 + 2ip′′j ω − (p′2j + p′′2j )

. (3)

This form generally allows a description of IR re-
flectance data to be made that is more accurate than that
obtained from the use of a sum of independent Lorentz
oscillators. This fact results from the ability to include
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non-harmonic effects by adjusting different imaginary
components of paired zeros and poles. As shown by Ger-
vais and Piriou [6], this corresponds to the incorpora-
tion (to some extent) of self-energy corrections arising
from the perturbative treatment of phonon interactions.
More recently, this form has been used to analyse the
lattice dynamics and non-harmonic coupling effects be-
tween plasmon excitations and LO phonons in semicon-
ductor films [7–10] and in a comprehensive analysis of the
anisotropic polar-phonon spectrum of sapphire by spec-
troscopic ellipsometry [11].

To the best knowledge of the authors, the same
methodological approach has not been adopted so far to
describe dielectric relaxation. Dı́az and Alexopoulos [12]
analysed the restrictions imposed by causality to the form
of dielectric dispersion and proposed that the complex per-
mittivity of any physically realizable material could be ex-
pressed as a sum of Lorentzians. To reach this conclusion,
these authors imposed a partial fraction expansion of a
factorized form of the electric susceptibility. In this paper
we follow the more general approach of Berreman and Un-
terwald and show that a factorized form of the dielectric
function can be used to describe, in a more flexible and
general way, the dispersion data of insulators.

2 The limits of the superposition of Debye
relaxors

The traditional description of relaxation is based on the
use of discrete or continuous sums of independent Debye
terms (sum model). This approach has at least three im-
portant drawbacks:

i) the unphysical assumption that two polar Debye relax-
ors respond independently to the electric field, even if
their frequencies are arbitrarily close to each other.
The coupling between relaxing polar units is implic-
itly ignored and the dielectric strength of each relaxor
does not depend on the local distribution of relaxation
times;

ii) the failure in the high frequency limit. At high fre-
quencies, the imaginary part of the Debye dielectric
function, ε2(ω), decays with ω−1. In consequence, the
absorption α = ωε2(ω)

c remains finite as ω → ∞. This
would imply that the dielectric loss connected with
orientational polarizability (ν < 109 Hz) could orig-
inate absorption in the visible and ultraviolet range
(ν > 1014 Hz). This result is a consequence of the fact
that a Debye relaxor is essentially an inertialess system
with a restoring force. The omission of inertia allows
an effective response to an arbitrarily fast stimulus.
Equivalently, in the time domain, it allows the polar-
ization to respond instantaneously to an abrupt sup-
pression of the electric field at t = t0, which originates
to a discontinuity of the time correlation function;

iii) the model does not allow the description of the cou-
pling between the polar relaxing units and other non-
polar degrees of freedom. Microscopically, relaxation is

connected with rotational motions of polar molecules
in a condensed medium. Manifold interactions are ex-
pected to induce a coupling between polar and non-
polar degrees of freedom, which might affect the re-
sponse of polarization to the external field. This effect
cannot be included in the sum model.

3 Review of the fundamentals
of the factorized form of ε(ω)

Causality requires that the response of the polarization
at a given time t cannot depend on the value of the
electric field at a time t′ > t. This implies that the
Fourier transform of the electric susceptibility χ(ω), the
time correlation function G(t − t′), must be zero if t′ > t.
Titchmarsh [13] has shown that, if χ(ω) is a (Lebesgue)
square integrable function on the real axis, this implies
that: a) χ(ω) is the limit, as φ → 0, of an analytic func-
tion χ(ω + iφ) that is regular and bounded in modulus
for φ > 0, and b) the real and imaginary parts of χ(ω)are
Hilbert transforms of each other. This last equivalence cor-
responds to the Kramers-Kronig theorem [4].

From Titchmarsh’s theorem it follows that any singu-
larity of χ(ω + iφ) must be located in the negative imagi-
nary half plane (φ < 0). As Berreman and Unterwald [5]
have stressed, as χ−1(ω) also represents a linear response
function, the zeros of χ(ω) must also be located in the neg-
ative imaginary half plane. From the fact that ε(ω+ iφ) =
1 + χ(ω + iφ) one can conclude that the same is true for
the poles and zeros of the generalized dielectric function.

The factorized form of the dielectric function is based
on the assumption that ε(ω+iφ) does not possess essential
singularities or continuous domains of singularities. From
this basic simplifying assumption it follows that ε(ω) can
be written as:

ε(ω) =

M∏
m=1

(ω − z̃m)

N∏
n=1

(ω − p̃n)
ϕ(ω) , (4)

where M and N represent the number of complex ze-
ros (z) and poles (p) in the negative imaginary half
plane, respectively, and ϕ(ω) is the limit, as φ → 0, of
a function ϕ(ω + iφ) that is analytic and bounded in the
whole complex plane. Moreover, as ε(|ω + iφ|) → 1 as
|ω + iφ| → ∞, it follows from the theorem of Liouville [14]
that ϕ(ω) = const. = 1 and that the number of poles must
be equal to the number of zeros (M = N). The simplest
form of the dielectric function is therefore:

ε(ω) =
N∏

n=1

ω − z̃n

ω − p̃n
. (5)

The physical nature of the medium can impose addi-
tional restrictions on the possible types of poles and zeros.
If, as it is the case under analysis, the linear response of the
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Fig. 1. Possible types of zeros and poles for a medium with
a linear response characterized by a symmetric second order
tensor.

system is characterized by a second order symmetric ten-
sor, then the response of the medium must be the same for
excitations propagating from the right to the left as from
the left to the right (i.e. if ω ↔ −ω) [5,15]. In such a case,
the map of zeros and poles must have mirror symmetry
about the imaginary axis (symmetry condition).

Figure 1 depicts the possible types of paired zeros and
poles compatible with the symmetry condition. We stress
that the insulator condition [5] (the imaginary part of
the dielectric function ε2 → 0 as ω → 0) is implicit in
Titchmarsh’s theorem (χ(ω) is a square integrable func-
tion for any real frequency) and in the symmetry condition
(there cannot be a single imaginary pole paired to a sin-
gle complex zero, or vice versa). The four types of paired
poles and zeros shown in the figure are therefore possible
for dielectric materials.

The complex poles of type-I originate the Berreman
and Unterwald model for resonance and their contribution
to the dielectric function has been analyzed in [5]. In the
following, we will focus on the other two possible types
and show that they may give rise to natural descriptions of
dielectric relaxation, providing an alternative to the sum
model of Debye relaxors.

4 The product model for Debye relaxors

Type-II poles and zeros correspond to independent pairs
of imaginary poles and zeros. The contribution of N pairs
of this type to the dielectric function is

ε(ω) = ε∞
N∏

k=1

ω + izk

ω + ipk
, (6)

where ε∞ is the contribution (real) to ε(ω) resulting from
the set of all pairs of poles and zeros with real frequen-
cies ν � ω. A single pair corresponds to a Debye relaxor:

ε(ω) = ε∞
ω + iz

ω + ip

= ε∞

[
ω + iz

ω + ip
− 1 + 1

]
(7)

= ε∞ +
∆ε

1 + ω
ip

with ∆ε = ε∞
(

z
p − 1

)
.

The form (6) is not equivalent to the sum model, es-
sentially because the contribution of each polar relaxor
(i.e. a pair of one imaginary zero and one imaginary pole)
to the static dielectric constant depends on the global dis-
tribution of poles and zeros. In fact, if ∆ε = ε0 − ε∞ =

ε∞

(
−1 +

N∏
i=1

zi

pi

)
is expressed as a sum of the contribu-

tions of the different relaxing units ∆ε =
N∑

i=1

∆εi, then the

dielectric strength of each unit must be:

∆εi = ε∞
1
pi

N∏
k=1

(zk − pi)∏
k �=i

(pk − pi)
. (8)

The sum model, in which two relaxing units i and k re-
spond independently, corresponds to the limit case where
zk−pi

pk−pi
≈ 1, i.e. is valid only for a contribution well sepa-

rated in frequency. The product model of Debye relaxors,
expressed by equation (6), is therefore more general, as it
includes coupling effects that are unnecessarily neglected
in the conventional model.

As referred to above, the Debye model must also be
seen as a low frequency approximation, as it produces a
finite absorption as ω → ∞. This limitation is not over-
come by the product model, since it is originated in the
inertialess nature of a Debye relaxor. In fact, for high fre-
quencies:

ε(ω) = ε∞
ω + iz′′

ω + ip′′
≈ ε∞

[(
1 +

iz′′

ω

)(
1 − ip′′

ω
+ ...

)]

= ε∞

[
1 +

i

ω
(z′′ − p′′) + ...

]

the imaginary part of ε(ω) decays with 1
ω unless z′′ = p′′,

i.e. unless the dielectric strength of the relaxor is zero.
In addition, the coupling between polar and non-polar re-
laxing units cannot be taken into account by using equa-
tion (6).

5 The Berreman-Unterwald model
and relaxation

The omission of inertia is justified in the limit when damp-
ing (viscous or resistive forces) dominates. It is well known
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Fig. 2. a) Single Lorentz oscillator described by two zero-pole pairs located symmetrically with respect to the imaginary axis,
having the same imaginary component (condition of high frequency transparency); b) critically damped pole (imaginary pole
of order 2) and a sub-damped zero (two symmetrical complex zeros) located near the imaginary axis; c) overdamped pole and
critically damped zero; d) overdamped poles and zeros (overdamped oscillator).

that a Debye relaxor behaviour can be obtained from a
Lorentz oscillator with a mass m, damping γ and elastic
force constant k if m → 0 and γ → ∞ in such a way that
mγ

k = τ remains finite [16].
The limiting conditions of zero mass and infinite damp-

ing are essentially unphysical. Consider alternatively two
zero-pole pairs located symmetrically with respect to the
imaginary axis (type-I). By writing z′′ = p′′ = Γ (condi-
tion of high frequency transparency [5]), z′

2
+ z′′

2
= Ω2

z

and p′
2
+ p′′

2
= Ω2

p , one can express their contribution to
ε(ω) (given by Eq. (3)) as:

ε(ω) = ε∞
ω2 + 2iΓω − Ω2

z

ω2 + 2iΓω − Ω2
p

. (9)

If the damping is progressively increased at constant
polar strength (i.e. at constant Ωz and Ωp; see Fig. 2),
these two symmetrically located zeros and poles approach
the negative imaginary axis. A critically damped pole
(transversal optical mode) and a sub-damped zero would
correspond to an imaginary pole of order 2 and two sym-
metrical complex zeros located near the imaginary axis.
Further increasing of the damping transform the pole of
order 2 into two separated and correlated poles of order 1
(type-III in Fig. 1 1). Similarly, above the critical damping

1 Type-III poles and zeros could also describe the contri-
bution of free charges (Drude model) if one of the poles were
located at z′′ = 0. However, this situation will not be discussed

of the zeros (Γ > Ωz), we obtain two correlated pairs of
imaginary poles and zeros (overdamped oscillator) corre-
sponding to the frequencies:

ω
z,(p)
± = −iΓ ± iΓ

√
1 − Ω2

z , (Ω2
p)

Γ 2
. (10)

Note that if the damping forces dominate, i.e. if z′′
Γ �

1, the contribution of the overdamped oscillator to the
dielectric function (equation 9) is approximately given by:

∆ε = ε∞

(
ω + i

z′′
2

2Γ
+ ...

)(
1 − i

ω

2Γ
+

(
z′′

2

4Γ 2

)
+ ...

)
(

ω + i
p′′

2

2Γ
+ ...

)(
1 − i

ω

2Γ
+

(
p′′

2

4Γ 2

)
+ ...

) ,

(11)
showing that equation (6) (Debye relaxor) actually rep-
resents a low frequency approximation of equation (9)(
ω ≈ z′′2

2Γ � Γ
)
. The essential difference in the use of an

overdamped oscillator instead of a Debye relaxor is that,
as inertia is included in the former case, the correct be-
haviour at high frequency is assured (the imaginary part
of ε(ω) decays as 1

ω3 ). This can also be clearly seen in the

because it is not relevant for insulating materials and it is not
compatible with the conditions imposed by Titchmarsh theo-
rem (that requires ε(ω) to be squared integrable on the real
axis).
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Fig. 3. Debye relaxor (dots) or overdamped oscillator (line)? The dispersion of the real (ε1) and imaginary (ε2) parts of the
dielectric function originating from overdamped oscillators (p = 1, z = 21/2 and a damping frequency Γ = 4 ((a)-(c)) or
Γ = 10 ((d)-(f))) and from the corresponding Debye relaxors obtained by neglecting the higher frequency zero-pole pair. The
corresponding Cole-Cole plots are also shown.

time domain, if we compare the time correlation function
resulting from (6) and (9):

G(t) =
χ0

τ
e−

t
τ ; (12)

G(t) = e−
Γ
2 t ∆Ω2

Γ

√
1 − Ω2

p

Γ 2

sinh

(
Γt

√
1 − Ω2

p

Γ 2

)
. (13)

While the Debye time-correlation function presents a dis-
continuity at t = 0

[
G(t → 0−) = 0; G(t → 0+) = χ0

τ

]
,

the overdamped oscillator produces a time correlation
function that is continuous at t = 0.

Figure 3 compares the real and imaginary parts of a
Debye relaxor with those obtained from equation (9) (with
Ω2

p = 1 and Ω2
z = 2). If for Γ = 4 the Cole-Cole plot is

still slightly deformed, for Γ = 10 the two curves nearly
coincide except at a very high frequency, not usually cov-
ered by the experimental data.

For a poly-dispersive system, equation (9) must be gen-
eralized to a factorized form, which is similar to that in-
troduced by Berreman and Unterwald for the description
of the infrared reststrahlen [5]:

ε(ω) = ε∞
∏

i

ω2 + 2iωΓzi − Ω2
z

ω2 + 2iωΓpi − Ω2
p

. (14)

In this case, the transparency condition at high frequency
requires the sum rule

∑
(Γzi − Γpi) = 0 rather than

Γzi = Γpi. This ability to accommodate slightly differ-
ent values of the damping of paired zeros and poles is a
well known source of flexibility in the description of ex-
perimental IR results. Similar to the case found in the
Berreman-Unterwald model, the contribution of each re-
laxing unit to the static dielectric constant is of the form:

∆εi = ε∞
1
p2

i

∏
k=1

(
z2

k − p2
i

)
∏
k �=i

(
p2

k − p2
i

) . (15)

Notice that, contrary to the case of equation (6),
which represents coupled Debye relaxors, non-polar relax-
ing modes can be included in equation (14). As can be
seen, the inclusion of non-polar relaxing modes (Ωzi =
Ωpi; ∆εi = 0) alters the dispersion ε(ω) if the non-polar
units are coupled to polar degrees of freedom, i.e. if dif-
ferent dampings are ascribed to the zero and pole of a
non-polar relaxor in such a way that the condition result-
ing from the sum rule

∑
(Γzi − Γpi) = 0 is verified.

The effect of coupled non-polar relaxations to the di-
electric dispersion is usually ignored in the analysis of
experimental data. However, this effect can be impor-
tant, as illustrated in the example depicted in Figure 4.
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Fig. 4. The effect of coupling between an overdamped oscil-
lator and non-polar oscillator. Parameters of the single over-
damped oscillator (line): Ωp = 1.3×105 Hz, Ωz = 9.5×105 Hz,
Γp = 2.25×106 Hz, Γz = 2.25×106 Hz. Parameters of the cou-
pled oscillators (dots): Ωp = 1.3 × 105 Hz, Ωz = 9.5 × 105 Hz,
Γp = 2.2 × 106 Hz, Γz = 2.3 × 106 Hz (polar oscillator);
Ω′

p = 2 × 104 Hz, Ω′
z = 2 × 104 Hz, Γ ′

p = 2.5 × 105 Hz,
Γ ′

z = 1.5 × 105 Hz (non-polar oscillator).

Here, a typical polar relaxing unit (characterized by Ωp =
1.3 × 105 Hz, Ωz = 9.5 × 105 Hz, Γp = 2.25 × 106 Hz
and Γz = 2.25 × 106 Hz) can display a dispersion, which
can not be practically distinguished from a single Debye
relaxor (notice the symmetry corresponding Cole-Cole di-
agram). If this relaxor is considered coupled to a non-polar
overdamped mode (with Ω′

p = Ω′
z = 2 × 104; Γz = Γ ′

p =
2×105 Hz), different damping coefficients must be ascribed
to the two pairs of zeros and poles. A small coupling,
expressed by slightly changes of the original coefficients
(Γp = 2.2× 106 Hz, Γz = 2.3× 106 Hz, Γ ′

p = 2.5× 105 Hz
and Γ ′

z = 1.5×105 Hz) can induce important modifications
in the observed dispersion. In this example, the Cole-Cole
plot obtained is strongly deformed and shows characteris-
tics resulting from the empirical Cole-Cole function.

6 Conclusion

The factorized form of dielectric dispersion is founded on
general and fundamental grounds which are not depen-
dent on any specific details of the system. From the con-
sequences of causality and from the simplifying assump-
tion of absence of essential singularities of the dielectric
function generalized to the complex plane, a very general
form for dispersion can be derived.

The general method presented has been applied suc-
cessfully to the description of reststrahlen since the pio-
neer work of Berreman and Unterwald. In this paper we
have shown that a similar method can be also applied to
the description of dielectric relaxation. This alternative
description of relaxation circumvents three basic limita-
tions of the conventional sum model of Debye relaxors: the
coupling between different polar degrees of freedom, the
high frequency transparency problem and the inclusion of
the effects of coupled non-polar relaxation mechanisms. It
therefore represents a simple method to analyze the exper-
imental data by adjusting the location of the most relevant
correlated imaginary poles and zeros and mapping their
temperature or field dependence.
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